

ENVIRONMENTAL PRODUCT DECLARATION

In compliance with ISO 14025 and EN15804 + A2:2019

STEEL FOR BUILDING ELECTROWELDED MESH AND LATTICE GIRDERS

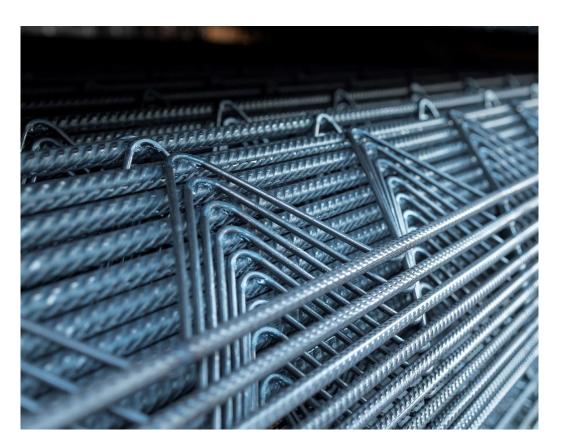
Program operator: EPDITALY

Published by: FERRIERE NORD S.p.A.

Declaration n.: EPDrete&traliccio 2024

EPDITALY registration code: EPDITALY0636

Published: 05/04/2024 Valid until: 05/04/2029


Production site: Osoppo (UD) - Italy

General Information

EPD DECLARATION OWNER:

FERRIERE NORD S.p.A. Zona industriale Rivoli di Osoppo Osoppo (UD), Italy.

PROGRAM OPERATOR:

EPDITALY Via Gaetano de Castillia 10 Milan (MI), Italy.

INDEPENDENT EVALUATION BY:

ICMQ S.p.A. Via Gaetano de Castillia 10 Milan (MI), Italy.

PLANT LOCATION:

FERRIERE NORD S.p.A. Zona industriale Rivoli di Osoppo Osoppo (UD), Italy.

Company Profile

Pittini Group, with more than 60 years of experience in the steel sector, is an international reference in the production of long steel products for mechanical industry and building sector.

With a production of almost 3 million tons per year, 18 manufacturing and logistics facilities and 1,800 workers, Pittini Group is a strong company, focused on constant growth, guided by hi-tech investments, product innovation and a strict environmental sustainability policy (Environmental Management System, ISO 14001-certified since 2009).

Pittini Group covers the whole production cycle: from raw material (recycled ferrous materials) to the finished product, producing billets, wire rod, hot-rolled reinforcing steel bars and coils.

	A1	Pay material aunaly	
<u> </u>		Raw material supply	
/	A2	Transport	PRODUCTION STAGE
✓	А3	Manufacturing	
MND	A4	Transport	CONSTRUCTION PROCESS
MND	A5	Construction/installation	CONSTRUCTION PROCESS
MND	B1	Use	
MND	B2	Maintenance	
MND	В3	Repair	
MND	B4	Replacement	USE
MND	B5	Refurbishment	
MND	В6	Operational energy use	
MND	В7	Operational water use	
✓	C1	De-commissioning \ Demolition	
✓	C2	Transport	END OF LIFE
✓	C3	Waste processing	END OF LIFE
✓	C4	Disposal	
~	D	Reuse \ Recovery \ Recycling potential	BENEFITS AND LOADS BEYOND THE SYSTEM BOUNDARY

MODULES: The system modules include the compulsory modules A1, A2, A3, C1, C2, C3, C4 and D as per EN 15804 standard, following a "from cradle to gate with modules C1-C4 and D" approach.

EPD TYPE: Specific for the electrowelded mesh and lattice girder produced in Osoppo (UD).

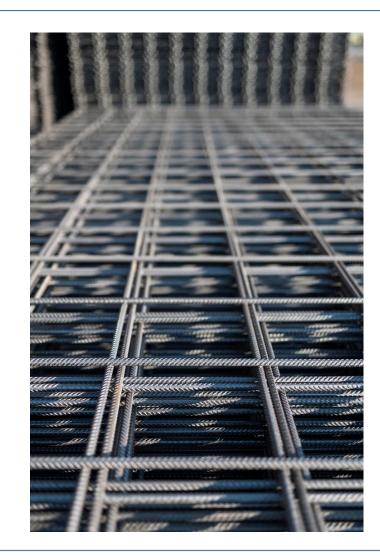
GEOGRAPHICAL LOCATION: Performances were calculated considering the plant of Osoppo with reference to the national market.

DATABASE: Ecoinvent 3.9.1

SOFTWARE: SimaPro 9.5.0.2

MND = Module Not Declared (Modulo non incluso)

The product: electrowelded mesh


DECLARED UNIT: 1,000 kg of mesh

The process of industrialisation of reinforcement has led to the development of electrowelded mesh with consequent speed, ease of execution and cost containment during the construction phase.

The Pittini Group is the leading Italian manufacturer of electrowelded mesh and thanks to its 3 factories in Italy, combined with over 60 years of experience, ensures a high quality product thanks to continuous investments aimed at achieving the highest technological level of the plants.

The Pittini Group produces a wide range of electrowelded mesh, made from **HD** - **High Ductility** - **steel**, with high quality characteristics guaranteed by the strict controls carried out throughout the entire supply chain, starting from the careful examination of the scrap, the raw material. Thanks to its ramified sales network, it ensures widespread commercial and technical assistance.

Electrowelded mesh produced in Osoppo does not contain substances included in the "Candidate list of substances of very high concern (SVHC)"

The product: lattice girder

DECLARED UNIT: 1000 kg of lattice girder

The Pittini Group was the first to introduce the electrowelded lattice girder into the construction market, a product that has contributed significantly to the industrialisation of modern construction.

The Pittini Group's electrowelded lattice girders are characterised by their wide range, high quality and competent technical assistance. These are used to make floor lattice girder beams (for clay-cement mix or concrete floors), lattice girder slabs (bridge decks, large monolithic or lightened floors) and double slabs (reinforced concrete cross walls in seismic zones, retaining walls, curtain walls, etc.)

Their widespread use in the infrastructure sector is due not only to the safe and fast on-site laying for their installation on the construction site, but also to the suppression of props when grouting, which is the main reason why they are widely used in the construction of bridge decks.

Lattice girders produced in Osoppo do not contain substances included in the "Candidate list of substances of very high concern (SVHC)"

Main raw materials

Main raw materials used to produce electrowelded meshes and lattice girders are:

FERROUS METAL SCRAP

The main material used

PIG IRON

REDUCED IRON

FERRO-ALLOYS

LIME

COAL

REFRACTORY MATERIALS

DESCRIPTION OF THE PROCESSES INCLUDED

Transport of material from production sites to Ferriere Nord S.p.a. in Osoppo has been included.

All transports of scrap and raw material from suppliers to the plant in Osoppo are included in the primary-information model. **INVENTORY QUANTITY**, expressed in kgkm, is defined as the product between the mass of the material and the distance covered.

Transport of waste from the plants in Osoppo to the processing plants is included in the model relying on primary data.

Processing of materials entering Ferriere Nord, **melting and manufacturing processes** to obtain meshes and lattice girders are included.

- A1 ENERGY AND RAW MATERIAL SUPPLY
- A2 TRANSPORT
- A3 MANUFACTURING (WASTE PROCESSING, ANCILLARY MATERIALS, EMISSIONS)

Following the review of the EN 15804 standard, groups C1, C2, C3, C4 and D have been included.

The groups C1-C4 include the impacts associated with the removal of the material from the building in which it is installed, the transport of the waste to the treatment center and the related activities (recycling, treatment ecc.), including the disposal in landfill.

The group D, includes the benefits coming from the outputs of recycling (intended as avoided products) and energy recovery operations.

- C1 DE-CONSTRUCTION/DEMOLITION
- C2 TRANSPORT
- C3 WASTE PROCESSING
- C4 DISPOSAL
- D REUSE-RECOVERY-RECYCLING POTENTIAL

SCRAP
PREPARATION
PROCESSES FOR
FURNACE MELTING
AND RAW MATERIALS
EXTRACTION

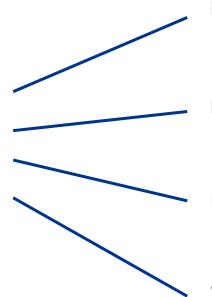
Ferrous scrap, pig iron and HBI processing: mechanical treatment of scrap, weighing, storage, basket preparation, handling with overhead cranes and sending to furnace;

Coal and lime processing:

weighing, insufflation and sending to furnace;

Processing of electrodes and refractories:

weighing and sending to furnace;


Processing ladle slag with iron:

cooling, iron removal, screening, pneumatic transport and injection into furnace.

IN-HOUSE
TRANSPORT
AND OPERATING
MACHINES USED AT
FERRIERE NORD

Inbound transport of materials by train and truck

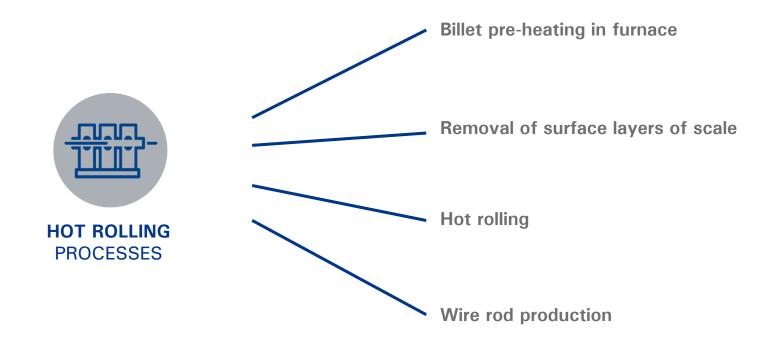
In-house transport with wheel loader and truck

Handling the finished product with forklift

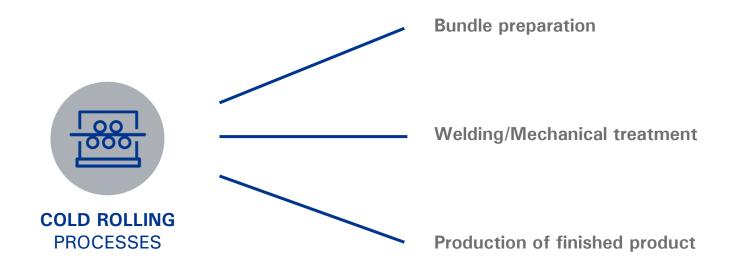
Waste transport to destination facilities

Melting process:

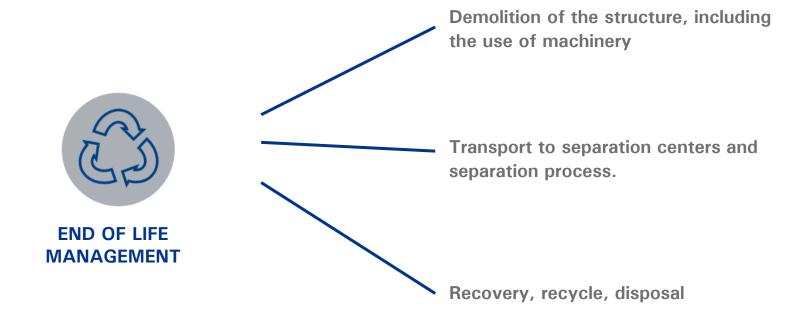
oxygen production, cooling water recirculation, electric arc furnace melting;

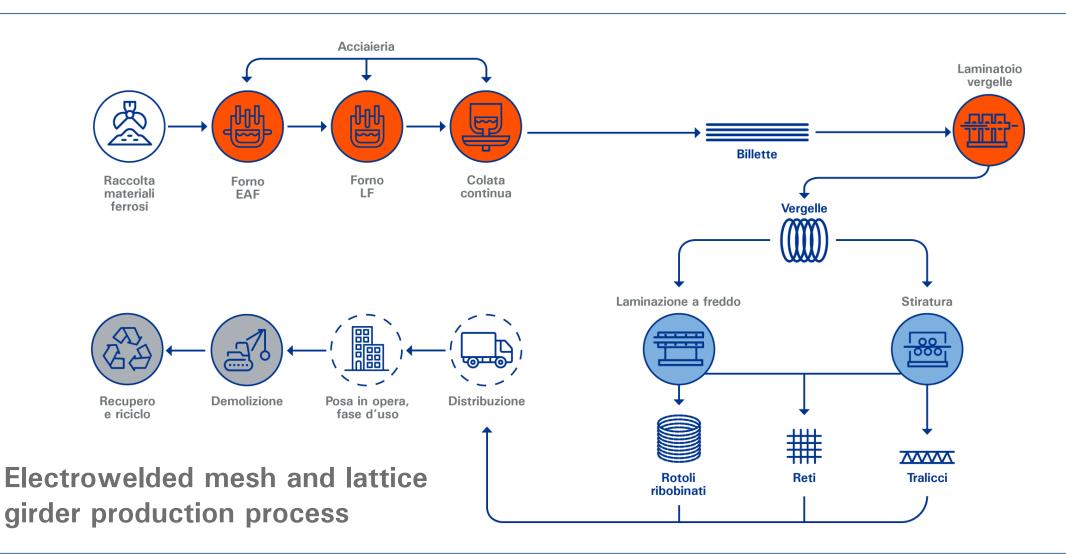

Secondary metallurgy process:

refining and additives addition, ferro-alloys processing (weighing and sending to secondary furnace), ladle preparation and maintenance;


Casting process:

steel casting and billet production, preparation and maintenance of tundishes.





Data referring to 1000 kg of electrowelded mesh

											404 1110011
ENVIRONMENTAL IMPACT PARAMETERS	UNIT	A1	A2	А3	A1-A3	A4, A5, B1 ÷ B7	C1	C2	С3	C4	D
Climate Change	kg CO2 eq	7,12E+0	1,94E+1	1,52E+0	1,04E+0	MND	7,12E+0	1,94E+1	1,52E+0	1,04E+0	2,36E+1
Climate Change - Fossil	kg CO2 eq	7,11E+0	1,93E+1	1,42E+0	1,04E+0	MND	7,11E+0	1,93E+1	1,42E+0	1,04E+0	2,36E+1
Climate Change - Biogenic	kg CO2 eq	2,87E-3	4,93E-2	9,99E-2	2,53E-3	MND	2,87E-3	4,93E-2	9,99E-2	2,53E-3	1,02E-4
Climate Change – LU&T	kg CO2 eq	7,86E-4	9,22E-3	3,25E-3	5,32E-4	MND	7,86E-4	9,22E-3	3,25E-3	5,32E-4	3,37E-3
Ozone Depletion	kg CFC11 eq	1,10E-7	4,13E-7	2,53E-8	2,43E-8	MND	1,10E-7	4,13E-7	2,53E-8	2,43E-8	4,92E-7
Acidification	mol H+ eq	6,44E-2	1,07E-1	7,34E-3	6,30E-3	MND	6,44E-2	1,07E-1	7,34E-3	6,30E-3	9,36E-2
Eutrophication Aquatic Freshwater	kg P eq	2,13E-4	1,32E-3	1,19E-3	7,48E-5	MND	2,13E-4	1,32E-3	1,19E-3	7,48E-5	1,01E-2
Eutrophication Aquatic Marine	kg N eq	2,98E-2	4,51E-2	1,51E-3	2,57E-3	MND	2,98E-2	4,51E-2	1,51E-3	2,57E-3	2,14E-2
Eutrophication Terrestrial	mol N eq	3,24E-1	4,85E-1	1,41E-2	2,76E-2	MND	3,24E-1	4,85E-1	1,41E-2	2,76E-2	2,32E-1
Photochemical Ozone Formation	kg NMVOC eq	7,80E-2	1,19E-1	3,56E-3	6,79E-3	MND	7,80E-2	1,19E-1	3,56E-3	6,79E-3	7,31E-2
ADP - Mineral And Metals *	kg Sb eq	2,42E-6	6,05E-5	3,19E-6	2,69E-6	MND	2,42E-6	6,05E-5	3,19E-6	2,69E-6	2,02E-4
ADP – Fossil *	MJ	9,10E+1	2,69E+2	3,10E+1	1,77E+1	MND	9,10E+1	2,69E+2	3,10E+1	1,77E+1	2,07E+2
Water Use *	m3 depriv.	1,86E-1	1,07E+0	3,14E-1	3,74E-1	MND	1,86E-1	1,07E+0	3,14E-1	3,74E-1	4,46E+0

^{*} The results of these environmental impact indicators shall be used with care as the uncertainties on these results are high or as there is limited experienced with the indicator.

Data referring to 1000 kg of electrowelded mesh

RESOURCES	UNIT	A1	A2	А3	A1-A3	A4, A5, B1 ÷ B7	C1	C2	С3	C4	D
Use of renewable primary energy excluding renewable primary energy resources used as raw materials (PERE)	MJ	5,52E+2	2,92E+0	2,69E+1	5,82E+2	MND	4,14E-1	3,14E+0	4,85E+0	1,63E-1	9,87E+0
Use of renewable primary energy resources used as raw materials (PERM)	MJ	1,27E+2	9,78E-1	4,01E+0	1,32E+2	MND	1,04E-1	1,01E+0	8,78E-1	5,62E-2	3,35E+0
Total use of renewable primary energy resources (PERT)	MJ	6,79E+2	3,90E+0	3,09E+1	7,14E+2	MND	5,18E-1	4,15E+0	5,73E+0	2,20E-1	1,32E+1

Data referring to 1000 kg of electrowelded mesh

NON-RENEWABLE RESOURCES	UNIT	А1	A2	А3	A1-A3	A4, A5, B1 ÷ B7	C1	C2	С3	C4	D
Use of non renewable primary energy excluding non renewable primary energy resources used as raw materials (PENRE)	MJ	9,66E+3	3,46E+2	1,81E+2	1,02E+4	MND	9,10E+1	2,69E+2	3,10E+1	1,77E+1	2,07E+2
Use of non renewable primary energy resources used as raw materials (PENRM)	MJ	0,00E+0	0,00E+0	0,00E+0	0,00E+0	MND	0,00E+0	0,00E+0	0,00E+0	0,00E+0	0,00E+0
Total use of non renewable primary energy resources (PENRT)	MJ	9,66E+3	3,46E+2	1,81E+2	1,02E+4	MND	9,10E+1	2,69E+2	3,10E+1	1,77E+1	2,07E+2

Data referring to 1000 kg of electrowelded mesh

USE OF SECONDARY RAW MATERIALS	UNIT	A1	A2	А3	A1-A3	A4, A5, B1 ÷ B7	C1	C2	С3	C4	D
Use of secondary materials (SM)	kg	9,64E+2	0,00E+0	0,00E+0	9,64E+2	MND	0,00E+0	0,00E+0	0,00E+0	0,00E+0	0,00E+0
Use of renewable secondary fuels (RSF)	MJ	0,00E+0	0,00E+0	0,00E+0	0,00E+0	MND	0,00E+0	0,00E+0	0,00E+0	0,00E+0	0,00E+0
Use of non renewable secondary fuels (NRSF)	MJ	0,00E+0	0,00E+0	0,00E+0	0,00E+0	MND	0,00E+0	0,00E+0	0,00E+0	0,00E+0	0,00E+0
USE OF FRESH WATER											
Net use of fresh water (FW)	m3	5,10E+0	3,83E-2	1,26E+0	6,41E+0	MND	6,44E-3	3,58E-2	2,33E-2	9,29E-3	8,45E-2

Data referring to 1,000 kg of electrowelded mesh

WASTE DISPOSAL	UNIT	A 1	A2	А3	A1-A3	A4, A5, B1 ÷ B7	C1	C2	С3	C4	D
Hazardous waste disposed (HWD)	kg	8,65E-2	1,98E-3	7,43E-4	8,93E-2	MND	6,12E-4	1,71E-3	4,66E-5	1,04E-4	2,54E-3
Non-hazardous waste disposed (NHWD)	kg	1,33E+2	1,54E+1	1,03E+1	1,59E+2	MND	1,30E-1	1,30E+1	9,30E-2	5,05E+1	5,47E+0
Radioactive waste disposed (RWD)	kg	1,32E-2	7,42E-5	3,63E-4	1,37E-2	MND	9,97E-6	8,69E-5	2,16E-4	4,38E-6	-2,64E-4
Components for re-use (CRU)	kg	0,00E+0	0,00E+0	0,00E+0	0,00E+0	MND	0,00E+0	0,00E+0	0,00E+0	0,00E+0	0,00E+0
Materials for Recycling (MFR)	kg	0,00E+0	0,00E+0	0,00E+0	0,00E+0	MND	0,00E+0	0,00E+0	0,00E+0	0,00E+0	0,00E+0
Materials for Energy Recovery (MER)	kg	0,00E+0	0,00E+0	0,00E+0	0,00E+0	MND	0,00E+0	0,00E+0	0,00E+0	0,00E+0	0,00E+0
Exported Energy (EE)	MJ	0,00E+0	0,00E+0	0,00E+0	0,00E+0	MND	0,00E+0	0,00E+0	0,00E+0	0,00E+0	0,00E+0

Data referring to 1000 kg of lattice girder

ENVIRONMENTAL IMPACT PARAMETERS	UNIT	A 1	A2	А3	A1-A3	A4, A5, B1 ÷ B7	C1	C2	С3	C4	D
Climate Change	kg CO2 eq	7,18E+2	2,67E+1	1,17E+2	8,62E+2	MND	7,12E+0	1,94E+1	1,52E+0	1,04E+0	3,44E+1
Climate Change - Fossil	kg CO2 eq	7,00E+2	2,67E+1	1,16E+2	8,43E+2	MND	7,11E+0	1,93E+1	1,42E+0	1,04E+0	3,44E+1
Climate Change - Biogenic	kg CO2 eq	1,75E+1	2,10E-2	8,20E-1	1,84E+1	MND	2,87E-3	4,93E-2	9,99E-2	2,53E-3	1,49E-4
Climate Change – LU&T	kg CO2 eq	4,81E-1	1,75E-2	1,22E-2	5,11E-1	MND	7,86E-4	9,22E-3	3,25E-3	5,32E-4	4,90E-3
Ozone Depletion	kg CFC11 eq	1,58E-5	4,74E-7	2,81E-7	1,65E-5	MND	1,10E-7	4,13E-7	2,53E-8	2,43E-8	7,17E-7
Acidification	mol H+ eq	2,67E+0	3,71E-1	5,76E-2	3,10E+0	MND	6,44E-2	1,07E-1	7,34E-3	6,30E-3	1,36E-1
Eutrophication Aquatic Freshwater	kg P eq	1,96E-1	1,38E-3	4,31E-3	2,01E-1	MND	2,13E-4	1,32E-3	1,19E-3	7,48E-5	1,47E-2
Eutrophication Aquatic Marine	kg N eq	5,76E-1	9,12E-2	2,53E-2	6,92E-1	MND	2,98E-2	4,51E-2	1,51E-3	2,57E-3	3,12E-2
Eutrophication Terrestrial	mol N eq	6,13E+0	1,00E+0	1,77E-1	7,31E+0	MND	3,24E-1	4,85E-1	1,41E-2	2,76E-2	3,37E-1
Photochemical Ozone Formation	kg NMVOC eq	1,66E+0	2,48E-1	6,99E-2	1,98E+0	MND	7,80E-2	1,19E-1	3,56E-3	6,79E-3	1,06E-1
ADP - Mineral And Metals *	kg Sb eq	2,16E-3	4,64E-5	1,98E-4	2,41E-3	MND	2,42E-6	6,05E-5	3,19E-6	2,69E-6	2,94E-4
ADP – Fossil *	MJ	1,06E+4	3,48E+2	1,84E+2	1,11E+4	MND	9,10E+1	2,69E+2	3,10E+1	1,77E+1	3,02E+2
Water Use *	m3 depriv.	1,79E+2	1,21E+0	5,44E+1	2,35E+2	MND	1,86E-1	1,07E+0	3,14E-1	3,74E-1	6,49E+0

^{*} The results of these environmental impact indicators shall be used with care as the uncertainties on these results are high or as there is limited experienced with the indicator.

Data referring to 1000 kg of lattice girder

RESOURCES	UNIT	A1	A2	А3	A1-A3	A4, A5, B1 ÷ B7	C1	C2	С3	C4	D
Use of renewable primary energy excluding renewable primary energy resources used as raw materials (PERE)	MJ	6,00E+2	2,94E+0	2,71E+1	6,30E+2	MND	4,14E-1	3,14E+0	4,85E+0	1,63E-1	1,44E+1
Use of renewable primary energy resources used as raw materials (PERM)	MJ	1,39E+2	9,84E-1	4,04E+0	1,44E+2	MND	1,04E-1	1,01E+0	8,78E-1	5,62E-2	4,88E+0
Total use of renewable primary energy resources (PERT)	MJ	7,39E+2	3,92E+0	3,11E+1	7,74E+2	MND	5,18E-1	4,15E+0	5,73E+0	2,20E-1	1,93E+1

Data referring to 1000 kg of lattice girder

NON-RENEWABLE RESOURCES	UNIT	A1	A2	А3	A1-A3	A4, A5, B1 ÷ B7	C1	C2	С3	C4	D
Use of non renewable primary energy excluding non renewable primary energy resources used as raw materials (PENRE)	MJ	1,06E+4	3,48E+2	1,84E+2	1,11E+4	MND	9,10E+1	2,69E+2	3,10E+1	1,77E+1	3,02E+2
Use of non renewable primary energy resources used as raw materials (PENRM)	MJ	0,00E+0	0,00E+0	0,00E+0	0,00E+0	MND	0,00E+0	0,00E+0	0,00E+0	0,00E+0	0,00E+0
Total use of non renewable primary energy resources (PENRT)	MJ	1,06E+4	3,48E+2	1,84E+2	1,11E+4	MND	9,10E+1	2,69E+2	3,10E+1	1,77E+1	3,02E+2

Data referring to 1000 kg of lattice girder

USE OF SECONDARY RAW MATERIALS	UNIT	A1	A2	А3	A1-A3	A4, A5, B1 ÷ B7	C1	C2	сз	C4	D
Use of secondary materials (SM)	kg	9,70E+2	0,00E+0	0,00E+0	9,70E+2	MND	0,00E+0	0,00E+0	0,00E+0	0,00E+0	0,00E+0
Use of renewable secondary fuels (RSF)	MJ	0,00E+0	0,00E+0	0,00E+0	0,00E+0	MND	0,00E+0	0,00E+0	0,00E+0	0,00E+0	0,00E+0
Use of non renewable secondary fuels (NRSF)	MJ	0,00E+0	0,00E+0	0,00E+0	0,00E+0	MND	0,00E+0	0,00E+0	0,00E+0	0,00E+0	0,00E+0
USE OF FRESH WATER											
Net use of fresh water (FW)	m3	5,62E+0	3,86E-2	1,27E+0	6,93E+0	MND	6,44E-3	3,58E-2	2,33E-2	9,29E-3	1,23E-1

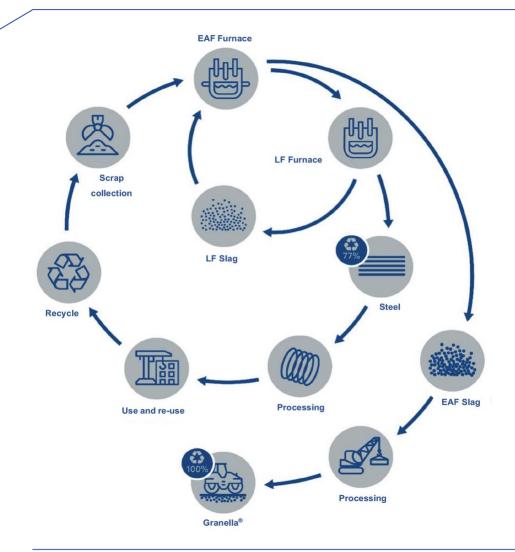
Data referring to 1000 kg of lattice girder

WASTE DISPOSAL	UNIT	A 1	A2	А3	A1-A3	A4, A5, B1 ÷ B7	C1	C2	С3	C4	D
Hazardous waste disposed (HWD)	kg	9,03E-2	1,99E-3	7,58E-4	9,30E-2	MND	6,12E-4	1,71E-3	4,66E-5	1,04E-4	3,70E-3
Non-hazardous waste disposed (NHWD)	kg	1,38E+2	1,55E+1	1,05E+1	1,64E+2	MND	1,30E-1	1,30E+1	9,30E-2	5,05E+1	7,97E+0
Radioactive waste disposed (RWD)	kg	1,48E-2	7,47E-5	3,66E-4	1,52E-2	MND	9,97E-6	8,69E-5	2,16E-4	4,38E-6	-3,85E-4
Components for re-use (CRU)	kg	0,00E+0	0,00E+0	0,00E+0	0,00E+0	MND	0,00E+0	0,00E+0	0,00E+0	0,00E+0	0,00E+0
Materials for Recycling (MFR)	kg	0,00E+0	0,00E+0	0,00E+0	0,00E+0	MND	0,00E+0	0,00E+0	9,50E+2	0,00E+0	0,00E+0
Materials for Energy Recovery (MER)	kg	0,00E+0	0,00E+0	0,00E+0	0,00E+0	MND	0,00E+0	0,00E+0	0,00E+0	0,00E+0	0,00E+0
Exported Energy (EE)	MJ	0,00E+0	0,00E+0	0,00E+0	0,00E+0	MND	0,00E+0	0,00E+0	0,00E+0	0,00E+0	0,00E+0

Calculation rules

DECLARED UNIT: 1,000 kg of electrowelded mesh/lattice girder

ASSUMPTIONS: System boundaries include the compulsory modules A1, A2, A3, C1, C2, C3, C4 and D as required by EN 15804 Standard, according to a "from cradle to gate with modules C1-C4 and D" approach. It should be noted that building, maintenance and decommissioning of the infrastructures - intended as buildings - and use of industrial ground, were not taken into consideration, because their contribution to environmental impact relating to the declared unit is deemed negligible. Consumption of oils, detergents and other technical materials for machine maintenance, energy consumption for plant lighting, energy consumption for office activities related to the management of the steel mill are included. Moreover, it should be noted that product distribution, use and disposal phases are not included in this study.


CUT-OFF RULES: The criterion chosen for the initial inclusion of the inbound and outbound elements, takes into account a 1% cut-off level, both in terms of mass, energy and environmental relevance. This means that a process was neglected if responsible of less than 1% of the total amount of mass, primary energy and total impact. However, all processes for which data are available were taken into account, even though with a contribution less than 1%. As a consequence, this threshold value was used in order to avoid collecting unknown data, not with the purpose of neglecting available data.

DATA QUALITY: in the LCA study, particular relevance was given to primary data collected at Ferriere Nord S.p.A. and Demolizioni Industriali S.r.I. through extensive measurements carried out at the plants.

ALLOCATIONS: allocation was avoided, whenever possible, by dividing the system into sub-systems. Otherwise, economic allocation was applied. As for waste modeling, the "Polluter pays principle" was applied.

Additional information

Fin Since 1995, the Pittini Group has chosen a "Zero Waste", production approach - a virtuous example of circular economy.

Zero Waste means that, at Pittini Group, steel production must not create waste. Instead, waste material is transformed in order to cut on unnecessary consumption and create opportunities of new uses.

Some great examples of circular economy are: **Granella**®, product obtained from EAF slag, residue with highest amount, that is used for the production of asphalt pavements and concrete conglomerates as an alternative to natural aggregates; Ladle furnace slag, which is later reintroduced in the production process as a substitute for lime; Dust coming from fume filtering, from which zinc and other metals are extracted; and Rolling mill scale, which is used in the production of concrete and counterweights in the household appliance industry.

Additional information

In every product is included recycled material coming from ferrous scrap.

The product certification P251 identifies the content of recycled and/or byproduct materials in steel products for construction.

The products object of this EPD has been successfully audited for their recycled and/or byproduct content according to the standard UNI PdR 88:2020.

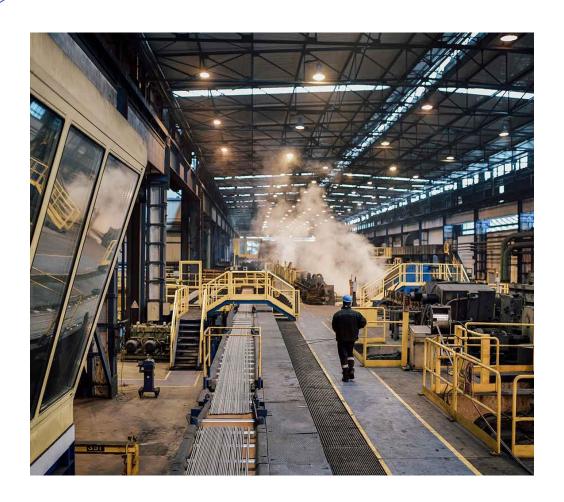
This certification is compliant with the scheme IGQ SC026 "Schema di certificazione del contenuto di riciclato e/o recuperato e/o sottoprodotto nei prodotti da costruzione".

First emission: 19-01-2024 Last update: 19-01-2024 Due date: 31-01-2027

The outcome of the verification on the products audited are indicated in the table on the right.

Certificate n°	Product category	Product	Recycled content
P251	Hot rolled steel products	Meshes and lattice girders	76,4%

References



- ISO 14040:2006/Amd 1:2020 Environmental management Life cycle assessment Principles and framework
- ISO 14044:2006/Amd 2:2020 Environmental management Life cycle assessment Requirements and guidelines Amendment 1
- ISO 14020:2000 Environmental labels and declarations
 -- General principles
- EN 15804:2012 + A2:2019 Sustainability of construction works – Environmental product declarations – Core rules for the product category of construction works
- PD CEN/TR 16970:2016 Sustainability of construction works – Guidance for the implementation of EN 15804
- PD CEN/TR 15941:2010 Sustainability of construction works – Environmental Product Declarations – Methodology for selection and use of generic data.
- ICMQ-001/15 PCR for construction products rev.3
- EPDItaly Regulation v.6 (01/12/2023)

General informations

Environmental declarations published within the same product category, but belonging to different programs, might not be comparable.

Specifically, EPDs regarding products for the building sector may not be comparable if not compliant with the EN 15804 standard.

REFERENCE DOCUMENTS: This declaration was drafted following EDPItaly's General Programme Instruction, available on www.epditaly.it.

ICMQ-001/15 PCR for construction products rev.3

CPC CODE: 4124

CONTACTS: dr. Carlo Ceschia

Ferriere Nord S.p.A., Tel. +39 0432 062850, carlo.ceschia@pittini.it

TECHNICAL SUPPORT: Spin Life s.r.l., via E. degli Scrovegni 29, 35131

Padua (Italy)

INDEPENDENT VERIFICATION OF DECLARATION AND DATA CARRIED OUT ACCORDING TO ISO 14025

☐ EPD Process certification (External) (Internal)